Ваша стройка

Можно ли манометр устанавливать горизонтально. Установка манометра

1. Шкала должна быть чётко видна.

2. Подход к манометру должен быть свободным.

3. В зависимости от высоты установки манометра выбирается диаметр прибора:

· до 2х метров - диаметр 100мм;

· от 2х до Зх метров - диаметр 160мм;

· свыше Зх метров - установка манометра запрещена.

4. Каждый манометр должен иметь отключающее устройство (Зх ходовой кран, вентиль или кран)

Правила обслуживания манометра .

Согласно технической инструкции производить посадку на «О»

Ведомственный осмотр 1 раз в 6 месяцев.

Государственная поверка- 1 раз в 12 месяцев.

Снимать и устанавливать манометры только при помощи ключа.

В случае пульсации давления необходимо принимать меры:

· при малой пульсации вваривается компенсатор;

· при большой пульсации используется специальное устройство - расширитель с двумя дросселями.

4. Оказание первой помощи при потере сознания (обмороке), тепловом и солнечном ударе.

Билет № 2

1. Параметры, характеризующие продуктивный пласт.

Нефть и газ аккумулируются в трещинах, порах и пустотах горных пород. Поры пластов малы, но их много, и они занимают объем, иногда достигающий 50 % общего объема пород. Нефть и газ обычно заключены в песчаниках, песках, известняках, конгломератах, являющихся хорошими коллекторами и характеризующихся проницаемостью, т.е. способностью пропускать через себя флюиды. Глины также обладают высокой пористостью, но они недостаточно проницаемы вследствие того, что соединяющие их поры и каналы очень малы, а флюид, находящийся в них, удерживается в неподвижном состоянии капиллярными силами.

Пористостью называют долю пустотного пространства в общем объёме породы.

Пористость зависит в основном от размера и формы зерен, степени их уплотнения и неоднородности. В идеальном случае (отсортированные однородные по размерам сферические зерна) пористость не зависит от размеров зерен, а определяется их взаимным расположением и может изменяться в пределах от 26 до 48 %. Пористость естественной песчаной породы, как правило, значительно меньше пористости фиктивного грунта, т.е. грунта, составленного из шарообразных частиц одинакового размера.

Песчаники и известняки имеют еще более низкую пористость из-за наличия цементирующего материала. Наибольшая пористость в естественном грунте присуща пескам и глинам, причем она возрастает (в отличие от фиктивного грунта) с уменьшением размера зерен породы, так как в этом случае их форма становится все более неправильной, а следовательно, и упаковка зерен – менее плотной. Ниже приведены значения пористости (в %) для некоторых пород.

Глинистые сланцы 0,5–1,4

Глины 6–50

Пески 6–50

Песчаники 3,5–29

Известняки и доломиты 0,5–33

С увеличением глубины вследствие повышения давления пористость горных пород обычно снижается. Пористость коллекторов, на которые бурят эксплуатационные скважины, изменяется в следующих пределах (в %):

Пески 20–25

Песчаники 10–30

Карбонатные породы 10–20

Карбонатные породы характеризуются обычно наличием различных по размеру трещин и оцениваются коэффициентом трещиноватости.

Одна из характеристик горных пород – гранулометрический состав, от которого во многом зависят другие физические свойства. Под этим термином понимается количественное содержание в породе разных по размеру зерен (в % для каждой фракции). Гранулометрический состав сцементированных пород определяется после их предварительного разрушения. Гранулометрический состав горных пород в известной мере характеризует их проницаемость, пористость, удельную поверхность, капиллярные свойства, а также количество остающейся в пласте нефти в виде пленок, покрывающих поверхность зерен. Им руководствуются в процессе эксплуатации скважин при подборе фильтров, предотвращающих поступление песка, и т.д. Размер зерен большинства нефтеносных пород колеблется от 0,01 до 0,1 мм. Однако обычно при изучении гранулометрического состава горных пород выделяют следующие категории размеров (в мм):

Галька, щебень > 10

Гравий 10–2

грубый 2–1

крупный 1–0,5

средний 0,5–0,25

мелкий 0,25–0,1

Алевролит:

крупный 0,1–0,05

мелкий 0,05–0,1

Глинистые частицы < 0,01

Частицы размером примерно до 0,05 мм и их количество устанавливают методом рассева на наборе сит соответствующего размера с последующим взвешиванием остатков на ситах и определением отношения (в %) их массы к массе первоначальной пробы. Содержание же более мелких частиц определяется методами седиментации.

Неоднородность пород по механическому составу характеризуется коэффициентом неоднородности – отношением диаметра частиц фракции, которая составляет со всеми более мелкими фракциями 60 % по массе от всей массы песка, к диаметру частиц фракции, составляющей со всеми более мелкими фракциями 10 % по массе от всей массы песка (d60/d10). Для «абсолютно» однородного песка, все зерна которого одинаковы, коэффициент неоднородности Kн = d60/d10 = 1; Kн для пород нефтяных месторождений колеблется в диапазоне 1,1–20.

Способность горных пород пропускать через себя жидкости и газы называется проницаемостью. Все горные породы в той или иной степени проницаемы. При существующих перепадах давления одни породы непроницаемы, другие проницаемы. Все зависит от размеров сообщающихся пор и каналов в породе: чем меньше поры и каналы в горных породах, тем ниже их проницаемость. Обычно проницаемость в перпендикулярном к напластованию направлению меньше его проницаемости вдоль напластования.

Поровые каналы бывают сверх- и субкапиллярными. В сверхкапиллярных каналах, диаметр которых более 0,5 мм, жидкости движутся, подчиняясь законам гидравлики. В капиллярных каналах с диаметром от 0,5 до 0,0002 мм при движении жидкостей проявляются поверхностные силы (поверхностное натяжение, капиллярные силы прилипания, сцепления и т.д.), которые создают дополнительные силы сопротивления движению жидкости в пласте. В субкапиллярных каналах, имеющих диаметр менее 0,0002 мм, поверхностные силы настолько велики, что движения в них жидкости практически не происходит. Нефтяные и газовые горизонты в основном имеют капиллярные каналы, глинистые – субкапиллярные.

Между пористостью и проницаемостью горных пород прямой зависимости нет. Песчаные пласты могут иметь пористость 10–12 %, но быть высокопроницаемыми, а глинистые при пористости до 50 % – оставаться практически непроницаемыми.

Для одной и той же породы проницаемость будет изменяться в зависимости от количественного и качественного состава фаз, так как по ней могут двигаться вода, нефть, газ или их смеси. Поэтому для оценки проницаемости нефтесодержащих пород приняты следующие понятия: абсолютная (физическая), эффективная (фазовая) и относительная проницаемость.

Абсолютная (физическая) проницаемость определяется при движении в горной породе одной фазы (газа или однородной жидкости при отсутствии физико-химического взаимодействия между жидкостью и пористой средой при полном заполнении пор породы газом или жидкостью).

Эффективная (фазовая) проницаемость – это проницаемость пористой среды для данного газа или жидкости при содержании в порах другой жидкой или газообразной фазы. Фазовая проницаемость зависит от физических свойств породы и степени насыщенности ее жидкостью или газом.

Относительная проницаемость - отношение эффективной проницаемости к абсолютной.

Значительная часть коллекторов неоднородна по текстуре, минералогическому составу и физическим свойствам по вертикали и горизонтали. Иногда обнаруживаются существенные различия физических свойств на небольших расстояниях.

В естественных условиях, т.е. в условиях действия давлений и температур, проницаемость кернов иная, чем в атмосферных условиях, часто она необратима при создании в лаборатории пластовых условий.

Иногда емкость коллектора и промышленные запасы нефти и газа в пласте определяются объемом трещин. Эти залежи приурочены, главным образом, к карбонатным, а иногда – к терригенным породам.

Обычно строгой закономерности в распределении систем трещиноватости по элементам структур, к которым приурочены нефте- и газосодержащие залежи, не наблюдается.

Для оценки проницаемости обычно пользуются практической единицей дарси, которая приблизительно в 10-12 раз меньше, чем проницаемость в 1 м2.

За единицу проницаемости в 1 дарси (1 Д) принимают проницаемость такой пористой среды, при фильтрации через образец которой площадью 1 см2 и длиной 1 см при перепаде давления 1 кг/см2 расход жидкости вязкостью 1 сПз (сантипуаз) составляет 1 см3/с. Величина, равная 0,001 Д, называется миллидарси (мД).

Проницаемость пород нефтяных и газовых пластов изменяется от нескольких миллидарси до 2–3 Д и редко бывает выше.

Прямой зависимости между проницаемостью и пористостью горных пород не существует. Например, трещиноватые известняки, имеющие малую пористость, часто обладают большой проницаемостью и, наоборот, глины, иногда характеризующиеся высокой пористостью, практически непроницаемы для жидкостей и газов, так как их поровое пространство слагается каналами субкапиллярного размера. Однако на основании среднестатистических данных можно сказать, что более проницаемые породы часто и более пористые.

Проницаемость пористой среды зависит преимущественно от размера поровых каналов, из которых слагается поровое пространство.

2. Сепараторы, назначение, устройство, принцип действия и техническое обслуживание.

При добыче и транспортировке в природном газе содержатся различного рода примеси: песок, сварной шлам, конденсат тяжёлых углеводородов, вода, масло и т.д. Источником загрязнения природного газ является призабойная зона скважины, постепенно разрушающаяся и загрязняющая газ. Подготовка газа осуществляется на промыслах, от эффективности работы которых зависит и качество газа. Механические примеси попадают в газопровод, как в процессе его строительства, так и при эксплуатации.

Наличие механических примесей и конденсата в газе приводит к преждевременному износу трубопровода, запорной арматуры, рабочих колёс нагнетателей и, как следствие, снижению показателей надёжности и экономичности работы компрессорных станций и в целом газопровода.

Всё это приводит к необходимости устанавливать на КС различные системы очистки технологического газа. Первое время на КС для очистки газа широко использовали масляные пылеуловители (рис. 3), которые обеспечивали достаточно высокую степень очистки (до 97-98%).

Масляные пылеуловители работают по принципу мокрого улавливания разного рода смесей, находящихся в газе. Примеси, смоченные маслом сепарируются из потока газа, само масло очищается, регенерируется и вновь направляется в масленый пылеуловитель. Масляные пылеуловители чаще выполнялись в виде вертикальных сосудов, принцип действия которых, хорошо иллюстрируется рис. 3.

Очищаемый газ поступает в нижнюю секцию пылеуловителя, ударяется в отбойный козырёк 4 и соприкасаясь с поверхностью масла, меняет направление своего движения. При это наиболее крупные частицы остаются в масле. С большой скоростью газ проходит по контактным трубкам 3 в осадительную секцию II, где скорость газа резко снижается и частицы пыли по дренажным трубкам стекают в нижнюю часть пылеуловителя I. Затем газ поступает в отбойную секцию III, где в сепараторном устройстве 1 происходит окончательная очистка газа.

Недостатками масляных пылеуловителей являются: наличие постоянного безвозвратного расхода масла, необходимость очистки масла, а также подогрева масла при зимних условиях эксплуатации.

В настоящее время на КС в качестве первой ступени очистки широко применяют циклонные пылеуловители, работающие на принципе использования инерционных сил для улавливания взвешенных частиц (рис. 4).

Циклонные пылеуловители более просты в обслуживании нежели масляные. Однако эффективность очистки в них зависит от количества циклонов, а также от обеспечения эксплуатационным персоналом работы этих пылеуловителей в соответствии с режимом, на который они запроектированы.

Циклонный пылеуловитель (рис. 4) представляет собой сосуд цилиндрической формы, рассчитанный на рабочее давление в газопроводе, со встроенными в него циклонами 4.

Циклонные пылеуловитель состоит из двух секций: нижней отбойной 6 и верхней осадительной 1, где происходит окончательная очистка газа от примесей. В нижней секции находятся циклонные трубы 4.

Газ через входной патрубок 2 поступает в аппарат к распределителю и приваренным к нему звёздообразно расположенным циклонам 4, которые неподвижно закреплены в нижней решётке 5. В цилиндрической части циклонных труб газ, подводимый по касательной к поверхности, совершает вращательное движение вокруг внутренней оси труб циклона. Под действием центробежной силы твёрдые частицы и капли жидкости отбрасываются от центра к периферии и по стенке стекают в коническую часть циклонов и далее в нижнюю секцию 6 пылеуловителя. Газ после циклонных трубок поступает в верхнюю осадительную секцию 1 пылеуловителя, и затем, уже очищенный, через патрубок 3 выходит из аппарата. В процессе эксплуатации необходимо контролировать уровень отсепарированной жидкости и мехпримесей с целью их своевременного удаления продувкой через дренажные штуцеры. Контроль за уровнем осуществляется с помощью смотровых стёкол и датчиков, закреплённых к штуцерам 9. Люк 7 используется для ремонта и осмотра пылеуловителя при плановых остановках КС. Эффективность очистки газ циклонными пылеуловителями составляет не менее 100% дл частиц размером 40мкм и более, и 95% для частиц капельной жидкости.

В связи с невозможностью достичь высокой степени очистки газа в циклонных пылеуловителях появляется необходимость выполнять вторую ступень очистки, в качестве которой используют фильтр-сепараторы, устанавливаемые последовательно после циклонных пылеуловителей (рис.5)

Работа фильтр-сепаратора осуществляется следующим образом: газ после входного патрубка с помощью специального отбойного козырька направляется на вход фильтрующей секции 3, где происходит коагуляция жидкости и очистка от механических примесей. Через перфорированные отверстия в корпусе фильтрующих элементов газ поступает во вторую фильтрующую секцию - секцию сепарации. В секции сепарации происходит окончательная очистка газа от влаги, которая улавливается с помощью сетчатых пакетов. Через дренажные патрубки мехпримеси и жидкость удаляются в нижний дренажный сборник и далее в подземные ёмкости.

Для работы в зимних условиях фильтр-сепаратор снабжён электрообогревом его нижней части, конденсатосборником и контрольно-измерительной аппаратурой. В процессе эксплуатации происходит улавливание мехпримесей на поверхности фильтр-сепараторе. При достижении перепада, равного 0,04 МПа, фильтр-сепаратор необходимо отключить и произвести в нём замену фильтр-элементов на новые.

Как показывает опыт эксплуатации газотранспортных систем, наличие двух степеней очистки обязательно на станциях подземного хранения газа, а также и на первой по ходу линейной компрессорной станции, принимающей газ из СПХГ. После очистки, содержание механических примесей в газе недолжно превышать5 мг/м3.

Газ, поступающий на головные компрессорные станции из скважин, как отмечалось, практически всегда в том лили ином количестве содержит влагу в жидкой и паровой фазах. Наличие влаги в газе вызывает коррозию оборудования, снижает пропускную способность газопровода. При взаимодействии с газом при определённых термодинамических условиях, образуются твёрдые кристаллические вещества-гидраты, которые нарушают нормальную работу газопровода. Одним из наиболее рациональных и экономичных методов борьбы с гидратами при больших объёмах перекачки является осушка газа. Осушка газа осуществляется аппаратами различной конструкции с использованием твёрдых (адсорбция) и жидких (абсорбция) поглотителей.

С помощью установок осушки газа на головных сооружениях уменьшается содержание паров воды в газе, снижается возможность выпадения конденсата в трубопроводе и образования гидратов.

3. Системы и схемы сбора, транспорта газа, их достоинства и недостатки

673

Хотим выразить огромную благодарность Вам Андрей, от нашей семьи. Вы Профессионал своего дела. Вся работа была выполнена в кротчайшие сроки, всего 4 дня. И за эти дни у нас на дачном участке появился полностью рабочий водопровод + канализация. Это просто потрясающе. Андрей, самостоятельно закупал часть материалов, ссылавшись на КАЧЕСТВО+ДОСТУПНЫЕ ЦЕНЫ. В процессе работы всё объяснял: ДЛЯ ЧЕГО?ЗАЧЕМ?КАК? Собрал,установил сам всю сантехнику+душевую кабину).Сложилось такое впечатление, что Андрей относится к новому объекту так, как будто он делает для себя. Мы в полном восторге. В доме есть вода)))) Андрей,спасибо Вам огромное. Мы обязательно будем Вас рекомендовать знакомым и близким. И дааа, самое главное, ЦЕНА очень доступная для такой проделанной работы! Андрей, за отоплением, мы тоже к Вам)))) P.S. Серебряковы

Оценка 5+

Анастасия , Бронницы

Услуги заказа: Подвод к водопроводной сети. Установка бытовой насосной станции. Разводка ХВС. Унитазы.

Выехал в течении часа. Вежлив и ощущается, что выполняет работы «как для себя». Сам купил все необходимое оборудование на рынке. Перед покупкой согласовал стоимость. Владимир производил замену гребёнок подачи водоснабжения в квартире, несмотря на то, что мастера с этого сайта, от работ отказывались один за другим - слишком ювелирная работа должна быть. Все сделал максимально оперативно и качественно. Настоятельно рекомендую мастера!

Оценка 5+

Александр , Балашиха

Услуги заказа: Установка гребёнки.

Одна из основных проблем в Москве, это поиск мастера, который знает свое дела и при этом не ломит цену (хоть сантехник, хоть стомотолог). Я слышала кучу историй где приходит сантехник ничего не починит и сдерет 7000, а то и больше. Виталий профессионал своего дела с очень адекватными расценками. Ничего лишнего не пытается содрать, при этом работу сделает на 110%. СЕЙЧАС ТАКИЕ МАСТЕРА ЭТО РЕДКОСТЬ! Всем советую, я очень довольна!

Оценка 5+

Людмила , м. Ясенево

Услуги заказа: Подвод к водопроводной сети.

Необходимо было исправить неправильно произведенную разводку труб водоснабжения в квартире.. Мне подобрали специалиста Пучкова Николая Николаевича. Мастер быстро разобрался в недочетах, допущенных при разводке труб. Сделал все быстро и качественно. Работой мастера остался доволен. При подобных проблемах рекомендую обращаться к этому специалисту.

Оценка 5

Выражаем благодарность Апееву Виталию Климовичу за безупречную и профессиональную работу. Была выполнена работа по замене смесителей, установки гребенки, гигиенического душа, смесителя в ванной и установка душа. Его работу можно характеризовать как работу квалифицированного ювелира по огранке драгоценных камней. Мы не ожидали, что такие мастера еще существуют (сравнение с сантехниками ДЭЗа). Аккуратность, знание своего дела, грамотное принятое решение в возникшей проблеме, надежность в эксплуатации всей установленной сантехники все это приводит в восхищение и вызывает доверие к этому мастеру. Виталий Климович приятен в общении, всегда вежлив, дает дельные советы по эксплуатации. Его работа заканчивается блеском и красотой. Стоимость его услуг соответствует результату. Мы, с уверенностью, ВСЕМ рекомендуем этого мастера!

Оценка 5+

Манометр - это специальный прибор, который предназначен для измерения давления. Такие приборы бывают различных видов и устанавливаются разными способами. Рассмотрим их подробно.

Способы установки манометров

Способ установки прямым путем

На предварительно вваренный адаптер сразу же прикручивается манометр со специальными резьбовыми уплотнениями. Такой метод считается наиболее доступным и применяется для работы устройства в стабильной среде без сильных скачков давления и без постоянных замен устройства.

Способ установки на трехходовой кран

На предварительно вваренный адаптер с помощью резьбовых соединений накручивается трехходовой кран, а в него вкручивается манометр. Подобным методом пользуются, если нужно при проверке показаний переводить прибор на атмосферное давление данным краном.

Последний разрешает сменить устройство, не прерывая рабочий цикл, или провести опрессовку системы и прочие работы, которые связаны с увеличением давления в системе.

Способ установки с помощью импульсивной трубки

Помимо двух вышеперечисленных методов, манометр устанавливают и через импульсную трубку, которая способна защищать чувствительный механизм прибора от повреждений.

Чтобы установить манометр подобным методом, следует на предварительно вваренный адаптер вертикально вкрутить импульсную трубку, туда присоединить трехходовой кран и непосредственно сам манометр.

Импульсную трубку применяют в тех ситуациях, где пар имеет температуру, превосходящую возможную норму измеряемых параметров. Она не позволяет манометру контактировать с горячим паром.

Каких правил нужно придерживаться при монтаже манометров?

  1. Манометр стоит монтировать именно так, чтобы показания четко распознавались. Шкала располагается вертикально или имеет наклон 30°.
  2. Диаметр корпуса прибора, монтирующийся на высоте до двух метров от уровня размещения площадки, не может быть меньше 100 мм, от двух до трех метров - не менее 160 мм. Монтаж прибора на высоте больше 3 м от уровня размещения площадки - категорически запрещен.
  3. Любой манометр должен отлично освещаться и ограждаться от лучей солнца и мороза.
  4. При монтаже манометра необходимо затянуть его на тройнике, при чем не дотягивая сам прибор, чтоб выпустить воздух.
  5. Манометр нельзя использовать, если на нем не стоит пломба с пометкой о проведенной проверки, просрочен срок этой проверки, стрелка прибора (когда его выключить) не становится на нулевое значение, расколото стекло, есть хоть малейшие повреждения прибора.

Если вы обнаружили неисправность прибора, то его следует сдать на ремонт, предварительно вычистив его от грязи и ржавчины.

Таким образом, если вам необходимо установить манометр, то обязательно обратитесь к специалистам. Монтаж этого прибора должен строго производиться квалифицированным сотрудником организации при помощи специального оборудования.

1. Схемы для измерения обычных сред манометрами установленными "по месту"

Измеряемая среда газ, жидкость

2. Схемы для измерения обычных сред манометрами установленными "по месту"

Измеряемая среда ГОРЯЧИЕ газы, жидкости, пар

Схема установки манометра на вертикальном трубопроводе

Схема установки манометра на горизонтальном трубопроводе

1-трубопровод, 2-конденсационная трубка, 3-трехходовой кран, 4-манометр(датчик давления)

3. Схемы для измерения агрессивных сред

4. а) агрессивная жидкость

1 - трубопровод;

2 - запорный вентиль;

3 - разделительный сосуд;

4 - соединительная муфта;

5 - манометр.

1 - трубопровод;

2- трехходовой кран;

3- мембранный разделитель;

4 - соединительная муфта;

5 - манометр.

4.Схемы для измерения пульсирующих сред


1 - трубопровод; 2 - запорный вентиль; 3 - трехходовой кран; 4 - дроссельный демпфер;

5 - спиралеобразный демпфер; 7 - кольцеобразный демпфер; 8 - соединитель-переходник;

9 - манометр.

Расходомеры

I. Измерение расхода сред расходомерами переменного перепада

Общие положения

1. Измерение расхода расходомерами переменного перепада производится с использованием сужающих устройств (СУ), работающих в комплектах с дифманометрами-расходомерами. Стандартными СУ являются камерные и дисковые диафрагмы, сопла, сопла Вентури и др. При протекании контролируемых сред через СУ на последних создаются перепады давлений (разности давлений до – и после СУ), являющиеся функциями измеряемых расходов. Создаваемые СУ перепады давлений подводятся к дифманометрам посредством двух импульсных труб измерительной трубной проводки (ИТП). Дифманометры воспринимают перепады давлений на СУ и преобразуют их в соответствующие выходные (обычно электрические: естественные или унифицированные) сигналы. Импульсные линии ИТП, таким образом, являются составной и достаточно важной частью схем измерения.

2. Обе импульсные трубы должны находиться в одинаковых температурных режимах, что должно обеспечиваться их совместной прокладкой в непосредственной близости друг от друга. Места прокладки ИТП называются трассами трубных проводок. Трассы трубных проводок прокладываются как правило по специальным несущим и крепящим конструкциям, по кратчайшим расстояниям и с обязательными соответствующими уклонами для стока и отвода скапливающихся жидкостей и газов.

3. Основная проблема применения расходомеров переменного перепада заключается в «борьбе» с загазовыванием импульсных линий (при измерении расхода жидкостей) и с заполнением импульсных линий жидкостями (при измерении расхода газов). Мешающие измерениям, снижающие точность измерений и приводящие к выходу из строя приборов газы и жидкости во-первых, случайным образом попадают в импульсные линии из мест отбора давлений, а во-вторых, естественным образом выделяются в самих импульсных трубах вследствие разности температур и плотностей сред в местах их отбора и местах измерения.

4. ИТП должны обеспечивать возможность их эксплуатаци: проверки, испытаний, продувки, промывки, заполнения разделительными жидкостями и т.п. как приборов и средств автоматизации, так и самих трубных проводок, периодического удаления из импульсных линий скапливающихся жидкостей и газов без останова технологического оборудования. С этой целью ИТП снабжаются: запорной арматурой (краны, вентили, задвижки и т.п.) – для отключения импульсных линий на время ремонтных и наладочных работ, газосборниками (при измерении расхода жидкостей) и влагосборниками (при измерении расхода газов) – для сбора и удаления соответственно мешающих измерениям газов и жидкостей, мембранными разделителями, разделительными, конденсационными и уравнительными сосудами и др. Запорная арматура устанавливается сразу после мест отбора давлений на СУ, газосборники – в местах скопления газов, т.е. в самых верхних точках ИТП, влагосборники – в местах скопления жидкостей и конденсата, т.е. в самых нижних точках ИТП.

5. Трубные проводки систем автоматизации должны обладать механической прочностью и плотностью соединений (с учетом давлений, температур, вибраций, пульсаций, степени агрессивности измеряемых сред, а также атмосферных и климатических воздействий). Выполняются трубные проводки из соответствующих материалов (сталь, алюминий и алюминиевые сплавы, медь, латунь, пластмассы, в отдельных случаях – резина и др.). Изменение направления ИТП должно, как правило, выполняться изгибом труб (при необходимости могут применяться угловые соединители, переходники, разветвители и т.п.). На отдельных участках могут применяться компенсаторы (повороты, колена) температурных удлинений труб.

6. Для уменьшения местных сопротивлений на импульсных линиях должны устанавливаться полнопроходные запорные, соединительные и присоединительные устройства. Диаметры (проходные сечения) труб должны быть оптимальными по динамическим свойствам, чтобы время передачи сигналов было минимальным. При этом должно выполняться определенное соотношение длин и диаметров, например, длина до 45 м: вода, воздух, сухой газ – диаметр 10 мм; влажный газ – диаметр 13 мм; загрязненные среды – диаметр 25 мм.

7. На практике используют схемы измерения с установкой дифманометров как ниже, так и выше СУ, что вносит существенные различия в условия эксплуатации расходомеров.

1. Схемы для измерения расхода неагрессивных сред расходомерами переменного перепада

При дистанционной установке манометр соединяют с отборным устройством импульсным трубопроводом. На рис. 64,6 монтаж манометров, показана схема трубопровода для измерения давления агрессивных жидкостей, а на рис. 64,в - пара.

К объекту (трубопроводу) 1 через кран 10 присоединен разделительный сосуд 5, к которому через кран 7 подключен импульсный трубопровод 15. Трубопровод имеет вертикальную трубу, к которой подходят ветви с уклоном 1:10. Верхняя часть вертикальной трубы служит для сбора газов (газосборник), которые выпускаются через кран 11. Нижняя часть трубы служит для сбора отстоя, который сливается через кран 12. На воздушных и газовых импульсных трубопроводах эта часть называется конденсатосборником. Прибор 4 присоединяется к трубопроводу через трехходовой кран 3. Краны 8 и 9 служат для слива и заполнения сосуда, а кран 6 - для контроля уровня разделительной жидкости.

Разделительный жидкостью импульсный трубопровод и разделительный сосуд 5 заполняют в описанной ниже последовательности. Трубопровод продувают сжатым воздухом. Жидкость закачивают через кран 12, находящийся в нижней точке импульсного трубопровода. Когда жидкость будет течь через кран 6, разделительный сосуд отключают (закрывают кран 7). Заполнение продолжают до тех пор, пока жидкость будет переливаться через кран 11, расположенный в верхней точке трубопровода.

После этого сосуд через кран 9 заливают измеряемой жидкостью. Подсоединяют сосуд к измеряемой среде и подключают прибор (открывают краны 10, 7, 3).

На паровых магистралях уравнительный сосуд 13 и импульсный трубопровод заполняются конденсатом за 30...40 мин при открытом кране 10. Кран 14 периодически открывают, и когда из него будет сливаться конденсат, краном 3 подключают прибор.

При значительной разнице ΔН уровней места отбора и места установки манометра в показания прибора необходимо вводить поправку Δp=c*ΔН (c-удельный вес жидкости, заполняющей импульсный трубопровод).

Поэтому, чтобы не вводить поправку, а также при большой дистанционности измерений, применяют комплект, состоящий из бесшкального манометра с электрическим или пневматическим выходным сигналом ГСП.

Бесшкальные манометры (напоромеры, тягомеры) устанавливают на стативах или специальных металлоконструкциях. На рис. 65,а показана установка мембранного электрического манометра ММЭ.

Манометры предназначены для преобразования давления жидкостей и газов в электрический токовый сигнал 0...5 мА. В комплекте с манометром может работать вторичный прибор КСУ, „Диск-250“ или другое, устройство контроля и управления с соответствующим выходным сигналом. Прибор монтируют на кронштейне 1 (или другой монтажной площадке). Корпус 2 прибора крепится болтами 3. Отклонение от вертикали не более1…2°. Измеряемое давление подводят к штуцеру 4. Для этого необходимо отвернуть накидную гайку 5, отсоединить штуцер. Приварить его к импульсной трубе и смонтировать узел на месте. Питание 220 В 50 Гц подводят к прибору кабелем через сальник 6, а кабель выходного сигнала через сальник 7. Присоединительные клеммы расположены внутри клеммной коробки 8.

На рис. 65,6 монтаж бесшкальных манометров, показана установка сильфонного напоромера 1 с пневматическим выходным сигналом 20...100 кПа (0,2...1 кгс/мм 2) на трубе или на стойке из трубы 2. Измеряемое давление подводится к штуцеру 3, а к штуцерам 4 и 5 подводят трубопровод питания и трубопровод выходного сигнала.



Сигнализаторы давления могут быть бесшкальными (датчики и реле давления). Например, ДД, РД-1 и др., или встроенными в измерительные приборы – 717 Cr и др. с электрическим или пневматическим выходами.

Датчики давления устанавливают на штативах и металлоконструкциях, а измерительные приборы монтируют на щитах. Приборы имеют выступающий или утопленный монтаж, аналогичный показанному на рис. 58 . Монтаж импульсных труб, труб питания и выходного сигнала, кабельных линий для цепей сигнализации и питания самописцев выполняют так же, как и в описанных выше случаях.